�ask coursetitle "What is the TITLE of this course? Use this format for capitalization: How to Capitalize the Title"�Developing Applications Using the Windows Telephony API�TapiComm:

Demonstrating the Telephony

and Win32 Comm APIs

David Janson

May 1995

Copyright 1995 Microsoft Corporation�
�
Introduction

The TapiComm sample uses the Telephony API and the Win32 Comm API to implement a very simple TTY data communications application. The sample illustrates how to build a well-behaved communications application for Windows 95. Use of the Telephony API ensures that the application will be able to share a telephone line with a variety of communications applications, including those bundled with Windows 95 (for example, Phone Dialer, Dial-up Networking, and HyperTerminal).

Contents

Overview of the TapiComm Sample

Overview of the TapiCode Module

Helper Structures

do/while Wrapper Loops

Line API Wrapper Functions

Synchronization Functions

Initializing TAPI

Dialing a Call

Getting a Phone Number and Line Device

Version Negotiation

Verifying the Line Device Capabilities

Opening the Line Device

Dialing the Phone Number

Finishing a Call

Shutting Down TAPI

Receiving and Processing Event Messages

Handling Asynchronous Replies

Handling Call State Notifications

Other Event Handlers

Overview of the CommCode module

StartComm

WriteThread

ReadThread

StopComm

1. Overview of the TapiComm Sample

TapiComm was developed to combine Basic Telephony with the Win32 Comm APIs to demonstrate how to implement a simple TTY data communication application.

The sample contains many code modules, but the two of primary interest are TapiCode and CommCode. The TapiInfo module contains functions useful for debugging purposes. The other modules are inherited from the BARSDI sample as a sample framework (for more information, please see the file MSTOOLS\SAMPLES\WIN32\FRMWORK\README.WRI on the Win32 SDK CD).

The user interface for TapiComm is simple; it lets the TapiCode module know when to dial and hang-up, and receives and sends strings from the CommCode module. There is no interpretation of data received and no TTY emulation

The source code fragments in this document are taken from the TapiComm sample application. The reader is assumed to be familiar with writing Windows-based applications in the C programming language. NOTE: The code fragments in this document are not complete and often are simplifications of the actual code. They are intended to explain the design of the TapiComm sample and many details are left out. For complete details, you should look at the source code.

2. Overview of the TapiCode Module

TAPICODE.C is the primary TAPI module of the sample. Except for debugging functions implemented in TapiInfo, all the TAPI code for the TapiComm sample is located in this module. The functions in the TapiCode module can be broken down into three categories: functions to initialize and shutdown TAPI, functions to dial and hang-up a call, and functions to handle asynchronous event messages.

2.1 Helper Structures

There are three major programming structures used in this sample that we should look at first, so that the sample is easier to understand. While these structures add to the size of the code, they simplify TAPI programming. These are the do/while wrapper loops, line API wrapper functions, and synchronization functions.

2.1.1 do/while Wrapper Loops

Most TAPI API calls can return error codes as well as success codes. Usually, the meaning of an error code is the same no matter which API returned it. To standardize error handling, the TapiComm sample makes all TAPI calls within a standard do/while loop, as follows:

do

{

 lReturn = TapiApiCall(...); // TapiApiCall is just a placeholder

 // special case error handling for the specific API call here, if necessary

 if (HandleLineError(lReturn)) // Standard error handling

 continue;

 else

 {

 // Do whatever is appropriate if TapiApiCall failed

 // return FALSE;

 // break; (out of the do/while loop)

 }

}

while (lReturn != SUCCESS)

This loop makes error handling easy and consistent throughout the sample. Most standard errors are handled in the HandleLineErr() function, either by correcting the error condition if possible or by notifying the user of the problem. If the error was corrected (this will occur rarely), HandleLineErr returns TRUE and TapiApiCall can be called again. If the error was not corrected, HandleLineErr returns FALSE, but the user has been notified of the problem (if necessary), so the loop should fail gracefully.

An example of an error that can be corrected is LINEERR_RESOURCEUNAVAIL. This error is usually returned when a resource is temporarily unavailable or because a non-TAPI application is using the comm port.TapiComm treats this as an error by displaying a dialog box which explains the problem and gives the user the option to cancel or try again. If the user corrects the problem and tries again, then HandleLineErr returns TRUE and the API is called again.

NOTE: All TAPI APIs return 0 to indicate success and negative numbers to indicate error cases. When you check if an API succeeded, it makes the code more readable if you check for SUCCESS rather than 0. The sample defines SUCCESS as 0 at the top of the TapiCode module and uses this constant frequently.

2.1.2 Line API Wrapper Functions

Many TAPI APIs can return a large amount of data through variable sized structures. It is the responsibility of the application to create a memory buffer large enough to handle the size of the requested structure plus any additional information that might be tagged onto the end of the structure. However, TAPI provides no direct way to find out how large the buffer needs to be ahead of time. Therefore, TAPI applications need to allocate, call the API, check the return value, reallocate if necessary, and try the call again. As a guideline, allocate a buffer big enough to hold the base structure, plus an additional amount.

Implementing the buffer allocation scheme described above can make the code significantly more complex. The approach TapiComm uses is to wrap these API calls. As an example, lineGetDevCaps fills a LINEDEVCAPS structure with information about a specific line. TapiComm implements the function I_lineGetDevCaps to handle the buffer allocation and the function call. I_lineGetDevCaps returns either a pointer to a buffer or NULL if there was an error. If a pointer is returned, it points to a buffer created with LocalAlloc that contains the requested structure. It is the responsibility of the calling function to call LocalFree on this buffer when it is finished with it. If the pointer returned is NULL, then it is assumed that all error handling has already been done and the code can fail gracefully at that point.

2.1.3 Synchronization Functions

The TapiComm sample implements 2 synchronization functions: WaitForCallState and WaitForReply. Because of the event driven nature of TAPI, these functions make programming much easier

There are times when TapiComm needs to wait for a call to reach a specific state before it can continue. A good example is when the user is finished with a call and the call handle needs to be deallocated. Before you can deallocate a call handle, the call must be in the LINECALLSTATE_IDLE state. The WaitForCallState function allows TapiComm to wait until the call reaches this desired state before calling lineDeallocateCall().

The other synchronization function, WaitForReply, is used because some TAPI APIs can complete asynchronously. These APIs have two possible return codes: a negative value indicating an error or a positive asynchronous Request ID. Three such APIs are used in the TapiComm sample: lineDrop, lineMakeCall, and lineDial. When an asynchronous Request ID is returned, the application will eventually receive a LINE_REPLY event with the matching Request ID indicating whether the API actually succeeded or not. TapiComm uses WaitForReply to wait for the asynchronous LINE_REPLY before proceeding.

Calling these synchronization functions works well in TapiComm because the sample is a moderately simple application and only handles one call at a time. A full featured call control application will likely want to implement a state machine that reacts to the asynchronous messages directly.

NOTE: It is important that if a TAPI API that can return asynchronously, it MUST return asynchronously. Therefore, a successful lineMakeCall will always return with an asynchronous ID. The only exception is that errors can be returned either synchronously or asynchronously. This guarantee can make the design of an asynchronous state machine much easier.

2.2 Initializing TAPI

In the TapiComm sample, the initialization takes place in the InitializeTAPI routine. This routine uses the lineInitialize API to initialize the TAPI environment, notify TAPI of its friendly name and enable a callback that will receive TAPI events. TAPI returns both a TAPI application handle and the number of TAPI line devices to the application.

Any standard errors are handled by the default error handler. While most errors simply cause us to fail to initialize TAPI, there is one error that needs special attention: LINEERR_REINIT. This error would be returned if TAPI were in the process of reinitializing and waiting for other applications to shut down their use of the TAPI API. If this error is returned, the InitializeTAPI function will wait 5 seconds to give other TAPI applications a chance to reinitialize. If, after the 5 seconds, this error is still returned, the user is notified of the problem and InitializeTAPI fails.

After executing the following loop, TapiComm is ready to make a call.

// Initialization loop in InitializeTAPI

do

{

 lReturn = lineInitialize(&g_hLineApp, hInst,

 lineCallbackFunc, “TapiComm”, &g_dwNumDevs);

 // If we get this error, its because some other app has yet

 // to respond to the REINIT message. Wait 5 seconds and try

 // again. If it still doesn't respond, tell the user.

 if (lReturn == LINEERR_REINIT)

 {

 if (bTryReInit)

 {

 MSG msg;

 DWORD dwTimeStarted;

 dwTimeStarted = GetTickCount();

 while(GetTickCount() - dwTimeStarted < 5000)

 {

 if (PeekMessage(&msg, 0, 0, 0, PM_REMOVE))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 bTryReInit = FALSE;

 continue; // Try one more time.

 }

 else

 {

 MessageBox(g_hWndMainWindow,

 "A change to the system configuration requires that "

 "all Telephony applications relinquish their use of "

 "Telephony before any can progress. "

 "Some have not yet done so."

 ,"Warning",MB_OK);

 return FALSE;

 }

 }

 if (HandleLineErr(lReturn))

 continue; // Error handled, try again.

 else

 return FALSE;

}

while(lReturn != SUCCESS);

2.3 Dialing a Call

Once TAPI is initialized, the next step is initiated by the user: dialing a call. This is done by first getting the phone number and line device to be used from the user. TapiComm then negotiates an API Version and makes sure the selected line device supports the required capabilities. Finally, after opening the line and making sure a call isn’t already in progress, the number is dialed.

2.3.1 Getting a Phone Number and Line Device

The first step in dialing a call is allowing the user to specify the phone number and select the line device. TapiComm implements this through the “Dial” dialog. This dialog is shown in Figure 1.

�

Figure � SEQ Figure * ARABIC �1�

This dialog box is filled with a series of TAPI API calls. The ‘Country Code’ control is filled using information returned by the lineGetCountry API. The ‘Your Location’ control is filled using information returned by the lineGetTranslateCaps API. The ‘TAPI Line’ control is filled by enumerating all the TAPI lines and using lineGetDevCaps to query the name for each line.

The initial values for country code, area code and location are found by locating the current location ID and then extracting the needed information from that particular location. This information is all stored in the LINEADDRESSCAPS structure, retrieved by the earlier lineGetTranslateCaps call..

The ‘Dialing Properties’ button is implemented with a call to lineTranslateDialog and the ‘Configure Line’ button calls lineConfigDialog.

The ‘Phone Numbers’ box displays three different phone numbers. The first, ‘Canonical’, is the number that TapiComm must compose itself. This number is composed using canonical format. Canonical format is a very strict way to format phone numbers so that the country code and area code are completely unambiguous. This format is explained in the TAPI API documentation, but demonstrated in Figure 1.

Once the canonical number has been composed, TapiComm makes a call to lineTranslateAddress. This call allows TAPI to translate the canonical phone number into a number that takes the dialing properties into account. These properties include the calling card, country code, area code (if necessary) and any numbers needed to dial an external line (as demonstrated by the ‘9’ in Figure 1). Once the number has been translated, lineTranslateAddress returns two strings: the ‘Dialable’ string and the ‘Displayable’ string.

Most applications would only display the displayable string. Both the Canonical and Dialable numbers are for the application's internal use. However, TapiComm displays these strings for demonstration purposes.

The ‘Use Country Code and Area Code’ check box is used to prevent TapiComm from using canonical format. While this gives the user full control over exactly what number they want to dial, this also disables almost all translation TAPI would apply to the number. However, even if canonical format is not used, TAPI applications should still translate their addresses. This gives TAPI the opportunity to prepend a ‘T’ or ‘P’ to indicate Tone or Pulse dialing or any other information that *must* be dialed for every call on some hardware.

2.3.2 Version Negotiation

Once the line device and phone number has been selected, the next step is to negotiate an API version using lineNegotiateAPIVersion. TapiComm uses the following call to negotiate a version:

dwAPIVersion = I_lineNegotiateAPIVersion(dwDeviceID);

The following call is performed by I_lineNegotiateAPIVersion:

lReturn = lineNegotiateAPIVersion(g_hLineApp, dwDeviceID,

 0x00010004, 0x00010004, &dwLocalAPIVersion, &LineExtensionID);

If SUCCESS is returned, the API version negotiated is in the dwLocalAPIVersion parameter. The most likely reason this call would fail is because the requested version range is outside the range that the TSP supports. Because TapiComm uses several features that are specific to version 1.4, this is the version requested. However, there are many TSPs that only support version 1.3, so the call could fail with LINEERR_INCOMPATIBLEAPIVERSION.

2.3.3 Verifying the Line Device Capabilities

The next step is to make sure the line has the capabilities to place the data call. First, retrieve the LINEDEVCAPS structure for the line, then check to make sure the line is capable of a VOICE bearer mode , DATAMODEM media mode, and the MAKECALL line feature.

lpLineDevCaps = I_lineGetDevCaps(lpLineDevCaps, dwDeviceID, dwAPIVersion);

if (lpLineDevCaps == NULL)

{

 // Error on this device. Notify user and fail.

}

if (!((lpLineDevCaps->dwBearerModes & LINEBEARERMODE_VOICE) &&

 (lpLineDevCaps->dwMediaModes & LINEMEDIAMODE_DATAMODEM) &&

 (lpLineDevCaps->dwLineFeatures & LINEFEATURE_MAKECALL))) // new to TAPI 1.4

{

 // Unable to use this device. Notify user and fail.

}

2.3.4 Opening the Line Device

Now that we know that the line is capable of making the call, we need to open the line, request specific notifications, and make sure that the line is not in use.

TapiComm uses LINECALLPRIVILEGE_NONE when opening the line. This means that the sample wants to place a calls but doesn’t want to know about incoming calls.

do

{

 lReturn = lineOpen(g_hLineApp, dwDeviceID, &g_hLine, dwAPIVersion, 0, 0,

 LINECALLPRIVILEGE_NONE, LINEMEDIAMODE_DATAMODEM, 0);

 if(lReturn == LINEERR_ALLOCATED) // Is the line available?

	{

		// line is in use by a non-TAPI application. Notify user and fail.

	}

 if (HandleLineErr(lReturn))

 continue; // error was handled, try again.

 else

	{

		// Unknown error. Notify the user and fail.

	}

}

while(lReturn != SUCCESS);

Assuming lineOpen succeeds, we request specific notification messages from TAPI.

lReturn = lineSetStatusMessages(g_hLine,

 LINEDEVSTATE_CONNECTED | LINEDEVSTATE_DISCONNECTED |

 LINEDEVSTATE_OUTOFSERVICE | LINEDEVSTATE_MAINTENANCE |

 LINEDEVSTATE_CLOSE | LINEDEVSTATE_REINIT);

Finally, we need to make sure the line isn’t in use by another TAPI application. This is done by getting the status of the first address on the line and checking if a call can be made on it. This is a good time to mention that TapiComm won’t take advantage of lines that have multiple addresses; the first address on a line is always used. This is a good assumption to make for normal POTS modems but is not necessarily the correct assumption for ISDN or PBX lines. If you are interested in lines with multiple addresses, you need to look at LINEDEVCAPS to find out how many addresses are available and give the user the choice of which address to use.

lpLineAddressStatus = I_lineGetAddressStatus(lpLineAddressStatus, g_hLine, 0);

if (lpLineAddressStatus == NULL)

{

	// Error on this device. Notify the user and fail.

}

// Is this line already in use?

if (!((lpLineAddressStatus -> dwAddressFeatures) & LINEADDRFEATURE_MAKECALL))

{

	// No available calls on this line. Notify user and fail.

}

2.3.5 Dialing the Phone Number

The next step in placing a call is to dial the number. TapiComm uses the DialCallInParts function to complete the dialing process.

DialCallInParts(lpLineDevCaps,szDialableString, g_szDisplayableAddress));

DialCallInParts is actually quite complex. This complexity arises from the fact that the sample can handle partial dialing. It is possible for the phone number to contain characters that are dialable characters, but that the TSP won’t handle. These characters are @ (wait for the line to be quiet), $ (wait for a credit card billing tone), W (wait for a dial tone), and ? (wait for the user to tell you to continue). It is possible that a TSP won’t support some (or any) of these, especially if the hardware doesn’t support them.

If the TSP can’t handle one of these characters, it’s up to the application to handle it. TapiComm finds out what characters the TSP can’t handle by checking the dwDevCapFlags in the LINEDEVCAPS structure. Then it parses the phone number and dials only characters that the TSP can handle. Characters that the TSP can’t handle are handled in DialCallByPart with a dialog box that asks the user to click OK when it's safe.

When you make a call, you need to create and fill a LINECALLPARAMS structure. This structure contains information that tells the TSP how you want the call placed. Once the structure is allocated, the only values in the structure that are interesting to TapiComm are:

// This is where we configure the line for DATAMODEM usage.

lpCallParams -> dwBearerMode = LINEBEARERMODE_VOICE;

lpCallParams -> dwMediaMode = LINEMEDIAMODE_DATAMODEM;

// We expect the line to start out IDLE.

lpCallParams -> dwCallParamFlags = LINECALLPARAMFLAGS_IDLE;

// if there are multiple addresses on line, use first anyway. It will take a more

// complex application than a simple TTY app to use multiple addresses on a line.

lpCallParams -> dwAddressMode = LINEADDRESSMODE_ADDRESSID;

lpCallParams -> dwAddressID = 0;

Once we have a LINECALLPARAMS structure, we can dial the phone number. The first time we dial on this line, we need to use lineMakeCall. After the call exists, lineDial is used to dial any other characters that need to be dialed.. NOTE: Both lineMakeCall and lineDial complete asynchronously. WaitForReply is used so we can wait for the both APIs to complete.

if (bFirstDial)

 lReturn = WaitForReply(

 lineMakeCall(g_hLine, &g_hCall, lpszDialableSubstring, 0, lpCallParams));

 else

 lReturn = WaitForReply(lineDial(g_hCall, lpszDialableSubstring, 0));

It is important to note that if an application expects to call lineDial, it must append a ‘;’ to the string used in the prior lineDial or lineMakeCall. The ‘;’ at the end of any dialed string tells the TSP that there will be more dialing strings to come. If the string is not terminated with a ‘;’, then the TSP can assume that no more characters will be dialed. TapiComm handles this at the same time that it is determining if it needs to do any partial dialing.

2.4 Finishing a Call

To finish a call, first, make sure there isn’t any comm activity with a call to StopComm(). This function is implemented in the CommCode module, which is responsible for stopping any comm activity.

If there is a call on the line, drop and deallocate it. Make sure the line is not IDLE before dropping it and that it is IDLE before deallocating it. You can check the state of the line by getting the LINECALLSTATUS. NOTE: There is a lot of error checking in the code. If an error does occur, it is generally written to the debugging output and ignored, because if an error occurs at this point, it is too late to turn back.

if (g_hCall)

{

 pLineCallStatus = I_lineGetCallStatus(pLineCallStatus, g_hCall);

 // Only drop the call when the line is not IDLE.

 if (!((pLineCallStatus -> dwCallState) & LINECALLSTATE_IDLE))

 {

 lReturn = WaitForReply(lineDrop(g_hCall, NULL, 0));

 // Wait for the dropped call to go IDLE

 lReturn = WaitForCallState(LINECALLSTATE_IDLE);

 }

 // The call is now idle. Deallocate it!

 lReturn = lineDeallocateCall(g_hCall);

}

// if we have a line open, close it.

if (g_hLine)

 lReturn = lineClose(g_hLine);

2.5 Shutting down TAPI

ShutdownTAPI is only called in two cases: when the user is finished with the TapiComm application and is shuts it down or when TapiComm receives the LINEDEVSTATE_REINIT message to signal that it needs to reinitialize.

Because TapiComm supports using only a single call at a time, the code to shutdown TAPI is very straightforward. You need to make sure to hang-up any call on the line that is being used, release the line, and shutdown. HangupCall does both the hang-up up of any call in progress as well as releasing the line, while lineShutdown tells TAPI that all TAPI is finished. As with HangupCall, any errors (except the standard handled ones) are ignored.

HangupCall();

lReturn = lineShutdown(g_hLineApp);

2.6 Receiving and Processing Event Messages

A TAPI application receives information in two ways: solicited and unsolicited. Solicited information is requested by the application through a function call such as lineGetDevCaps or lineGetAddressCaps, as we have demonstrated. Unsolicited information arrives in the form of messages (most importantly, call state messages). Often, the two mechanisms are used together, as when an application receives a LINE_CALLSTATE message, after which it checks the information contained in the LINECALLINFO structure by calling lineGetCallInfo.

When a TAPI application initializes its connection to the line service with lineInitialize, it gives a pointer to the callback function it uses for that line service to TAPI.DLL. In response, TAPI returns a TAPI application handle. This function pointer applies to all lines subsequently opened with the returned TAPI application handle. The callback function will receive a large amount of information for the application in the form of line device messages. These messages include indications that the status of a line, address, or call has changed; indications that media, tone, or digit monitoring has detected the requested event; and indications that information about a call has changed. This function is analogous to a window procedure.

The callback function used in the TapiComm sample is called lineCallbackFunc. It consists of a switch statement based on the specific dwMsg passed into the function by TAPI.DLL. The other parameters of the callback function are the line or call handle (which is passed depends on the message type), an instance value (which the application can optionally provide with the lineOpen function), and other values which are dependent on the message type.

The switch statement for the TapiComm lineCallbackFunc dispatches the message to the correct handler, depending on the type of message. lineCallbackFunc also uses the OutputDebugLineCallback function defined in the TapiInfo module to print the message to the debugging output. Therefore, all messages that pass through the callback function are at least displayed, even if nothing is done with them.

void CALLBACK lineCallbackFunc(

 DWORD dwDevice, DWORD dwMsg, DWORD dwCallbackInstance,

 DWORD dwParam1, DWORD dwParam2, DWORD dwParam3)

{

 OutputDebugLineCallback(dwDevice, dwMsg, dwCallbackInstance,

 dwParam1, dwParam2, dwParam3);

 // All we do is dispatch the dwMsg to the correct handler.

 switch(dwMsg)

 {

 case LINE_REPLY:

 DoLineReply(dwDevice, dwMsg, dwCallbackInstance, dwParam1, dwParam2, dwParam3);

 break;

 case LINE_CALLSTATE:

 DoLineCallState(dwDevice, dwMsg, dwCallbackInstance, dwParam1, dwParam2, dwParam3);

 break;

 case LINE_CLOSE:

 DoLineClose(dwDevice, dwMsg, dwCallbackInstance, dwParam1, dwParam2, dwParam3);

 break;

 case LINE_LINEDEVSTATE:

 DoLineDevState(dwDevice, dwMsg, dwCallbackInstance, dwParam1, dwParam2, dwParam3);

 break;

 case LINE_CREATE:

 DoLineCreate(dwDevice, dwMsg, dwCallbackInstance, dwParam1, dwParam2, dwParam3);

 break;

 default:

 OutputDebugString("lineCallbackFunc message ignored\n");

 break;

 }

}

2.6.1 Handling Asynchronous Replies

DoLineReply is the handler for the LINE_REPLY message. This message is sent to an application upon completion of an asynchronous function. It specifies whether the function was successful or not. Recall that TapiComm uses only three asynchronous functions: lineMakeCall, lineDial, and lineDrop and that the sample handles only one call at a time. Therefore, only one of these APIs will be outstanding at any time. This greatly simplifies the processing of the LINE_REPLY message; all that is needed is to make sure we are waiting for the specific reply and set a global variable to indicate the return code. The global variable is checked by the synchronizing WaitForReply function that will allow the program to act on the reply value.

// If we are waiting for this async Request ID (and we should be),

// then set the global variables to acknowledge it.

if (g_dwRequestedID == dwParam1)

{

 g_bReplyRecieved = TRUE;

 g_lAsyncReply = (long) dwParam2;

}

2.6.2 Handling Call State Notifications

DoLineCallState handles all call state notifications. Most call state notifications are just echoed to the user, although some may require that we hang up the call, like a notification that the other end disconnected.

switch (dwParam1) // What is the new state of the call?

{

 // LINECALLSTATE_DIALING and LINECALLSTATEDIALTONE are

 // handled very similar to LINECALLSTATE_PROCEEDING:

 case LINECALLSTATE_PROCEEDING:

 UpdateStatusBar("Call is Proceeding",1,0);

 break;

 // LINECALLSTATE_IDLE and LINECALLSTATE_DISCONNECTED are

 // handled very similar to LINECALLSTATE_BUSY:

 case LINECALLSTATE_BUSY:

 UpdateStatusBar("Line Busy",1,0);

 HangupCall();

 break;

}

The most interesting call state is the LINECALLSTATE_CONNECTED. Receiving this is the event indicates that the call has been connected to the remote end and data communication is ready to start. It is now time to get the Win32 Comm File handle and pass it into the CommCode module to start data communication.

case LINECALLSTATE_CONNECTED:

{

	lReturn = lineGetID(0, 0, g_hCall, LINECALLSELECT_CALL, lpVarString, "comm/datamodem");

	// The handle to the comm port is contained in a LPVARSTRING structure.

	hCommFile = *((LPHANDLE)((LPBYTE)lpVarString + lpVarString -> dwStringOffset));

	// Is the Comm module able to start with this handle?

	if (StartComm(hCommFile))

	{

		// Notify user that we are connected.

	 break;

	}

	else

	{

 		// Its very important that we close all Win32 handles.

	 // The CommCode module is responsible for closing the hCommFile handle if it

		// succeeds in starting communications. However, since we got here, it didn’t,

		// so its our job to close this handle.

	 if (hCommFile)

 		 CloseHandle(hCommFile);

	 HangupCall();

	}

}

2.6.3 Other Event Handlers

The DoLineClose handler handles the LINE_CLOSE message. This message is sent to any application after an open line has been forcibly closed. This may be done by the TSP to prevent a single application from monopolizing a line device. Whether or not the line can be reopened immediately after a forced close is device-specific.

A line device may also be forcibly closed after the user has modified the configuration of that line or its driver. If the user wants the configuration changes to be effective immediately (as opposed to after the next system restart), then a TSP may forcibly close the line device. All that you need to do is clean up internal variables and notify the user that the line has been closed.

The DoLineDevState handler handles all LINE_LINEDEVSTATE messages. This message gives state information about lines regardless of calls that might be on the line. As with the DoLineCallState handler, most of the LINEDEVSTATE messages simply require notifying the user of the status of the line and possibly shutting down calls on the line. There is one special case: LINEDEVSTATE_REINIT. If this message is received, this means that the TSP needs to reinitialize. In this case, all applications are required to relinquish their use of TAPI temporarily. TapiComm notifies the user and calls ShutdownTAPI if it receives this message.

switch(dwParam1)

{

 case LINEDEVSTATE_REINIT:

 ShutdownTAPI();

 WarningBox("Tapi line configuration has changed.");

 break;

 // OUTOFSERVICE and DISCONNECTED are almost identical to

 // MAINTENANCE but with different messages.

 case LINEDEVSTATE_MAINTENANCE:

 // This case can be sent by the service provider.

 HangupCall();

 WarningBox("Line selected is now out for maintenance.");

 break;

}

The last message specifically handled by the TapiComm message handers is the LINE_CREATE message. This message is sent to applications when a new line is added to the system and a new line device is available. TapiComm simply holds on to the total number of lines. The next time a number is dialed, the new line(s) are considered for use, as well as the old ones.

if (dwParam1 > g_dwNumDevs)

 g_dwNumDevs = dwParam1;

3. Overview of the CommCode Module

Now that we have made the connection using TAPI, we need to know how to use Win32 Comm APIs over the phone. The CommCode module contains all the code for supporting a Win32 Comm data stream. It is organized in three sections: ReadThread, WriteThread, and starting and stopping the read and write threads.

Once the TapiCode module establishes a connection and gets a valid file handle, it passes this handle to the CommCode module through the StartComm function. StartComm creates both the read and write threads, which are responsible for reading from and writing to the data stream (usually a comm port). When the data communications are finished (usually when the user clicks the hang-up button), the StopComm function will signal both threads to terminate.

Note: The use of threads separates comm activity from the rest of the sample. This allows the user interface to be more responsive and not limit the user when writing data. Also, when there is data ready to be read, its important that the ReadThread is not doing other things and can read the data. When data needs to be exchanged between any of the threads, a PostMessage layer is used.

The WriteCommString function is called by the UI when there is a string to write to the comm port It posts a message to the write thread indicating what needs to be written.

#define PWM_COMMWRITE WM_USER+1

BOOL WriteCommString(LPCSTR lpszStringToWrite, DWORD dwSizeofStringToWrite)

{

	PostThreadMessage(g_dwWriteThreadID, PWM_COMMWRITE,

		(WPARAM) dwSizeofStringToWrite, (LPARAM) lpszStringToWrite))

	return TRUE;

}

A similar mechanism, PostWriteToDisplayCtl, is used by the ReadThread when it has data that it needs the UI thread to display.

Using PostMessage makes the sample simple; there is no internal queue that needs to be managed. However, there are a couple of problems with this method. The primary one is that there is no way to know if flow control is needed. If lots of data is being written, it will tend to pile up in the message queue without any indication that the comm port is lagging behind. The same is true for incoming data; if data coming in over the comm port is coming in faster than it can be handled, there is no flow control. In both cases, the limiting factor is memory. This situation is acceptable for a sample such as TapiComm, but flow control should be considered for real world applications.

3.1 StartComm

When the TapiCode module has a Win32 Comm File Handle, it passes the handle to StartComm. StartComm makes sure that there isn’t communication in progress and that the handle is valid. Then, it configures the handle.

Standard configuration is done by TAPI. The call to lineConfigDialog gives the user the ability to configure settings like baud rate, parity, and flow control. One thing that has not been configured is timeouts. The default timeouts are 0 (no time out). Therefore, if a 2K buffer is used for all reads (as CommCode does), the user has to wait for 2K of data to come in before the read finishes and the data is displayed. Because this isn’t what most people expect, StartComm does this:

COMMTIMEOUTS commtimeouts;

commtimeouts.ReadIntervalTimeout = 250;

commtimeouts.ReadTotalTimeoutMultiplier = 0;

commtimeouts.ReadTotalTimeoutConstant = 0;

commtimeouts.WriteTotalTimeoutMultiplier = 0;

commtimeouts.WriteTotalTimeoutConstant = 0;

SetCommTimeouts(g_hCommFile, &commtimeouts);

With this setting, if the time between two incoming characters is 250 milliseconds (1/4 second), there is a time-out. Even with very slow modems, if 1/4 of a second goes by without receiving a character, then the other end has stopped transmitting and it is time to deal with the data available.

Once the handle is configured, we create a manual reset anonymous event object. This event is used to signal the read and write threads to terminate.

g_hCloseEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

Now, we create both the read and write threads. NOTE: The priority for both threads is increased above normal. It is important that these threads will be able to get CPU time and get to the comm port when they need to do so.

g_hReadThread = CreateThread(NULL, 0, StartReadThreadProc, 0, 0, &g_dwReadThreadID);

SetThreadPriority(g_hReadThread, THREAD_PRIORITY_HIGHEST);

g_hWriteThread = CreateThread(NULL, 0, StartWriteThreadProc, 0, 0, &g_dwWriteThreadID);

SetThreadPriority(g_hWriteThread, THREAD_PRIORITY_ABOVE_NORMAL);

At this point, StartComm returns TRUE and data communications are officially started.

3.2 WriteThread

When the WriteThread is created, the StartWriteThreadProc function is used as its starting point. The first thing to do is create an overlapped structure. All Win32 Comm is all done through the file APIs, like ReadFile and WriteFile. Because the TSP is opening the port in overlapped mode, we need an overlapped structure and an event to signal when writes are done.

OVERLAPPED overlappedWrite = {0, 0, 0, 0, NULL}; // Initialization is important!

overlappedWrite.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);

Here is the loop that TapiComm uses to wait for data from the user or for the CloseEvent to be signaled.

while (TRUE)

{

 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

 {

 // If there are no messages pending, wait for a message or the CloseEvent.

 dwHandleSignaled = MsgWaitForMultipleObjects(1,

 &g_hCloseEvent, FALSE, INFINITE, QS_ALLINPUT);

 switch(dwHandleSignaled)

 {

 case WAIT_OBJECT_0: // CloseEvent signaled!

 goto EndWriteThread;

 case WAIT_OBJECT_0+1: // Posted message received.

 continue;

 }

 }

 // After each message retrieved, make sure the CloseEvent wasn't signaled.

 if (WAIT_TIMEOUT != WaitForSingleObject(g_hCloseEvent,0))

 goto EndWriteThread;

 // Handle the message.

 switch(msg.message)

 {

 case PWM_COMMWRITE:

 {

 // Write the string to the comm port.

 // HandleWriteData does not return until the whole string has been written,

			// an error occurs or until the CloseEvent is signaled.

 if (!HandleWriteData(&overlappedWrite, (LPSTR) msg.lParam, (DWORD) msg.wParam))

 {

 // If it failed, either we got a signal to end or there really was

				// a failure. In either case, it’s time to end.

 LocalFree((HLOCAL) msg.lParam);

 goto EndWriteThread;

 }

 // The pointer in the PWM_COMMWRITE message is pointing to a

			// LocalAlloc()d buffer and always needs to be freed.

 LocalFree((HLOCAL) msg.lParam);

 break;

 }

 } // End of switch(message)

} // End of main loop. Go get next string to write.

HandleWriteData contains all the code to write to the comm port and wait for it to finish writing:

HANDLE HandlesToWaitFor[2];

HandlesToWaitFor[0] = g_hCloseEvent;

HandlesToWaitFor[1] = lpOverlappedWrite -> hEvent;

do

{

 // Start the overlapped I/O.

 if (!WriteFile(g_hCommFile, &lpszStringToWrite[dwWhereToStartWriting],

 dwNumberOfBytesToWrite, &dwNumberOfBytesWritten, lpOverlappedWrite))

 {

 // WriteFile failed. Expected because it is an overlapped write

 dwLastError = GetLastError();

 // Likely the service provider has closed the port. Time to end.

 if (dwLastError == ERROR_INVALID_HANDLE)

 return FALSE;

 // Not the expected IO_PENDING error. No idea what.

 if (dwLastError != ERROR_IO_PENDING)

 {

 // Debugging code deleted.

 PostHangupCall();

 return FALSE;

 }

 // This is the expected ERROR_IO_PENDING case.

 // Wait for either overlapped I/O completion,or for the CloseEvent.

 dwHandleSignaled = WaitForMultipleObjects(2, HandlesToWaitFor, FALSE, INFINITE);

 switch(dwHandleSignaled)

 {

 case WAIT_OBJECT_0: // CloseEvent signaled!

 return FALSE; // Time to exit.

 case WAIT_OBJECT_0 + 1: // Wait finished.

 break; // Time to get the WriteFile results

 }

 if (!GetOverlappedResult(g_hCommFile,

 lpOverlappedWrite, &dwNumberOfBytesWritten, TRUE))

 {

 // Debugging code deleted.

 return FALSE;

 }

 }

 // Some data was written. Make sure it all got written.

 dwNumberOfBytesToWrite -= dwNumberOfBytesWritten;

 dwWhereToStartWriting += dwNumberOfBytesWritten;

}

while(dwNumberOfBytesToWrite > 0); // Write the whole thing!

return TRUE;

3.3 ReadThread

The ReadThread is also based on overlapped file I/O, so it is similar to the WriteThread code. However, ReadThread is also going to handle any error events that might happen on the port, so it more complex. Before we can enter the main loop, there is some setup to do. First, the OVERLAPPED structures are filled. There are two of them: one to look for new data to read and one to look for comm errors. Next, create an array of event handles that ReadThread will wait on. Next, the file handle is configured to allow error notification. Last, wait for data to be read or an error event to occur.

OVERLAPPED overlappedRead = {0, 0, 0, 0, NULL};

OVERLAPPED overlappedCommEvent = {0, 0, 0, 0, NULL};

overlappedRead.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);

overlappedCommEvent.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);

// We will be waiting on these objects.

HandlesToWaitFor[0] = g_hCloseEvent;

HandlesToWaitFor[1] = overlappedCommEvent.hEvent;

HandlesToWaitFor[2] = overlappedRead.hEvent;

// Set the comm mask so we receive error signals.

SetCommMask(g_hCommFile, EV_ERR);

// Start waiting for CommEvents (Errors)

if (!SetupCommEvent(&overlappedCommEvent, &fdwEvtMask))

{

 PostHangupCall();

 goto EndReadThread;

}

// Start waiting for Read events.

if (!SetupReadEvent(&overlappedRead, szInputBuffer, INPUTBUFFERSIZE,

 &nNumberOfBytesRead))

{

 PostHangupCall();

 goto EndReadThread;

}

At this point, ReadThread is waiting for either data or an error. Time to start the loop and wait for something to happen.

// Keep looping until we break out.

while (TRUE)

{

 // Wait until some event occurs:

 // (data to read; error; stopping).

 dwHandleSignaled =

 WaitForMultipleObjects(3, HandlesToWaitFor, FALSE, INFINITE);

 // Which event occurred?

 switch(dwHandleSignaled)

 {

 case WAIT_OBJECT_0: // Signal to end the thread. Time to Exit

 goto EndReadThread;

 case WAIT_OBJECT_0 + 1: // CommEvent signaled.

 {

 // Handle the CommEvent.

 if (!HandleCommEvent(&overlappedCommEvent, &fdwEvtMask, TRUE))

 {

 PostHangupCall();

 goto EndReadThread;

 }

 // Start waiting for the next CommEvent.

 if (!SetupCommEvent(&overlappedCommEvent, &fdwEvtMask))

 {

 PostHangupCall();

 goto EndReadThread;

 }

 break;

 }

 case WAIT_OBJECT_0 + 2: // Read Event signaled.

 {

 // Get the new data!

 if (!HandleReadEvent(&overlappedRead,

 szInputBuffer, INPUTBUFFERSIZE, &nNumberOfBytesRead))

 {

 PostHangupCall();

 goto EndReadThread;

 }

 // Wait for more new data.

 if (!SetupReadEvent(&overlappedRead,

 szInputBuffer, INPUTBUFFERSIZE, &nNumberOfBytesRead))

 {

 PostHangupCall();

 goto EndReadThread;

 }

 break;

 }

 } // End of switch(dwHandleSignaled).

} // End of while(TRUE) loop.

SetupReadEvent eventually boils down to making a single overlapped ReadFile:

ReadFile(g_hCommFile, lpszInputBuffer, dwSizeofBuffer,

 lpnNumberOfBytesRead, lpOverlappedRead);

The event in the overlapped structure is reset and will be signaled when either lpszInputBuffer is full or when there is a timeout (1/4 second of inactivity after receiving data). Use lpnNumberOfBytesRead to find the number of bytes read.

HandleReadEvent makes the following calls:

if (GetOverlappedResult(g_hCommFile, lpOverlappedRead, lpnNumberOfBytesRead, FALSE))

{

 HandleReadData(lpszInputBuffer, *lpnNumberOfBytesRead);

}

GetOverlappedResult tells you if the ReadFile was successful and how many bytes were written. Assuming that ReadFile was successful, the data string is passed onto HandleReadData. All HandleReadData does is copies the data into a LocalAlloc()d buffer and call PostWriteToDisplayCtl , as shown below. The new data is posted to the user interface thread to be handled later by the main thread. This way, the read thread can get back to waiting for data.

// LocalAllocation of lpszPostedBytes removed.

PostWriteToDisplayCtl(lpszPostedBytes, dwSizeofBuffer);

SetupCommEvent makes the following call:

// Start waiting for Comm Errors.

WaitCommEvent(g_hCommFile, lpfdwEvtMask, lpOverlappedCommEvent);

If the CommEvent is signaled, this indicates that an error occurred on the port. The event that signaled the CommEvent is placed into the dwEvtMask variable. When the event is signaled, the ReadThread calls HandleCommEvent.. HandleCommEvent then finds out what event was signaled, checks if it was an error, determines what error occurred, and prints notification of the error. NOTE: TapiComm does nothing with errors except clear them and notify the user. There is no error correction implemented. Error correction is very specific to the type of data being transmitted and is outside the scope of this sample to demonstrate.

// Find out what event was signaled and check if it's an error.

GetOverlappedResult(g_hCommFile, lpOverlappedCommEvent, &dwDummy, FALSE);

...

// Which error was it?

ClearCommError(g_hCommFile, &dwErrors, NULL);

// Its possible that multiple errors occurred and were all handled in the

// last ClearCommError. Because all errors are signaled individually, but can be

// cleared all at once, pending comm events can yield an EV_ERR while dwErrors equals 0.

// Ignore this event because it was already handled.

if (dwErrors == 0) return TRUE;

if (dwErrors & CE_FRAME) // Print the error

if (dwErrors & CE_OVERRUN) // Print the error

if (dwErrors & CE_RXPARITY) // Print the error

3.4 StopComm

When its time to stop the Comm threads, StopComm signals them to close. If they don’t close by themselves, they will be terminated. Because terminating a thread with TerminateThread does not allow the thread to clean up, this is a last chance solution.

void StopComm()

{

 // Close the threads.

 CloseReadThread();

 CloseWriteThread();

 // Not needed anymore.

 CloseHandle(g_hCloseEvent);

 // Now close the comm port handle.

 CloseHandle(g_hCommFile);

 g_hCommFile = NULL;

}

void CloseReadThread()

{

 // Signal the event to close the worker threads.

 SetEvent(g_hCloseEvent);

 // Purge all outstanding reads

 PurgeComm(g_hCommFile, PURGE_RXABORT | PURGE_RXCLEAR);

 // Wait 10 seconds for it to exit. Shouldn't happen.

 if (WaitForSingleObject(g_hReadThread, 10000) == WAIT_TIMEOUT)

 {

 TerminateThread(g_hReadThread, 0);

 // The ReadThread normally cleans up these itself

 // when it ends normally.

 CloseHandle(g_hReadThread);

 g_hReadThread = 0;

 g_dwReadThreadID = 0;

 }

}

void CloseWriteThread()

// CloseWriteThread is implemented identical to CloseReadThread.

 TapiComm (� PAGE �4�

TapiComm (� PAGE �13�

